

Available online at www.sciencedirect.com

Tetrahedron

Rh(I)-catalyzed three-component reaction of 2,3-allenoates, organoboronic acids, and aldehydes. An efficient synthesis of α,β-unsaturated δ-lactones

Tao Bai,^a Shengming Ma^{a,*} and Guochen Jia^{b,*}

^aState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, PR China ^bThe Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China

> Received 23 January 2007; revised 2 March 2007; accepted 2 March 2007 Available online 7 March 2007

Abstract— α , β -Unsaturated δ -lactones were efficiently prepared by an Rh(I)-catalyzed three-component reaction of 2,3-allenoates, organoboronic acids, and aldehydes. The reaction may proceed via a sequential transmetalation, carbometalation of 2,3-allenoates, insertion of aldehydes, and lactonization process.

© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

α,β-Unsaturated δ-lactone is an important structural unit existing in many biologically important natural products such as jaborosalactones R, S, T,¹ physalolactone C,² gonio-thalamin,³ forstriecin,⁴ etc. On the other hand, allenes have recently shown unique reactivity and stereoselectivity due to the two mutually perpendicular π-orbitals.^{5,6} Nowadays, metal-catalyzed reactions of allenes have become one of the powerful tools for the synthesis of the cyclic products and have been applied to the total synthesis of natural products.^{7,8}

The carbometalation of allenes usually affords π -allylic intermediate.⁹ It's well known that organorhodium intermediates may react easily with carbon–oxygen double bond.¹⁰ Thus, we imagined that the carborhodiation of allenoates would afford π -allylic rhodium intermediate, which may react readily with aldehydes to afford alcohols. Lactonization of this hydroxyl ester may afford α , β -unsaturated δ -lactones. This method would allow for a one-pot selective construction of δ -lactones via a tandem three-component reaction, which would improve the efficiency of their synthesis as compared to the traditional methods.^{11–18} Malinakova et al. reported the palladium-catalyzed three-component coupling of arylboronic acids with allenes and aldehydes.¹⁹ In this paper, we wish to report the Rh-catalyzed threecomponent cyclization.

* Corresponding authors. Fax: +86 21 6416 7510 (S.M.); e-mail addresses: masm@mail.sioc.ac.cn; chjiag@ust.hk

2. Results and discussion

As a first try, under nitrogen atmosphere, the reaction of methyl buta-2,3-dienoate 1, phenylboronic acid 2a, and benzaldehyde **3a** in the presence of $RhCl(PPh_3)_3$, cesium carbonate, and water was conducted at 60 °C overnight in THF to afford a 1:2.1 mixture of δ-lactone 4a and 5-hydroxy-2-enoate **5a**,²⁰ which could not be separated by chromatography on silica gel (entry 1, Table 1). When 2.5 mol % PPh₃ was added to the reaction mixture, product 4a was obtained with 33% isolated vield and the formation of acvclic product 5a was not observed (entry 2, Table 1). In order to study the effect of PPh₃, [RhCl(COD)]₂ was used as the catalyst precursor together with KF.²¹ With the 1:2a:3a ratio being 2:1:4, the yield of 4a reached 59% (entry 7, Table 1). Other inorganic fluoride salts failed to afford better results (entries 8-10, Table 1). Increasing the amount of PPh₃ from 10 mol % to 20 mol %, the yield was only 26% (entry 11, Table 1). Thus, the best ratio of Rh/PPh₃ is \sim 1:2 to keep the catalytic reaction going. The reaction in dioxane at 80 °C afforded the product 4a in <5% yield (entry 12, Table 1). The combination of RhCl(PPh₃)₃ with KF yielded 4a in only 18% yield (entry 6, Table 1). If the reaction was conducted in the absence of H₂O, the reaction is rather poor (entry 5, Table 1).

With the reaction conditions presented in entry 7 of Table 1, other boronic acids and aldehydes were tested with the typical results being summarized in Table 2.

In all the cases, the α , β -unsaturated δ -lactones were isolated in moderate yields (42–55%). Halogen substituent on the

Keywords: Rhodium; Allene; Synthesis; α,β-Unsaturated δ-lactone.

Dh

Table 1. Optimization of the reaction conditions for Rh(I)-catalyzed three-component reaction of methyl 2,3-butadienoate, PhB(OH)₂, and PhCHO

	 CO ₂ M	+ PhB(OH) ₂ + PhCl /le 2a 3 a	HO 5 mol% Rh/PPh ₃ base, H ₂ O (4 equiv) THF, 60 °C, N ₂ , overnight	Ph 0 0 Ph 0 4a 5a	CO ₂ Me H
Entry	Catalyst	PPh ₃ (mol %)	1:2a:3a (molar ratio)	Base (equiv)	Yield of $4a^d$ (%)
1	RhCl(PPh ₃) ₃	a	1:2:2	Cs_2CO_3 (0.5)	8 ^b
2	RhCl(PPh ₃) ₃	2.5	1:2:2	Cs_2CO_3 (0.5)	33
3	[RhCl(COD)] ₂	10	1:2:2	$Cs_2CO_3(2)$	Trace
4	[RhCl(COD)] ₂	10	1:2:2	KF (2)	31
5	[RhCl(COD)] ₂	10	1:2:2	KF (2)	$2^{e,f}$
6	RhCl(PPh ₃) ₃	_	2:1:4	KF (2)	18
7	[RhCl(COD)] ₂	10	2:1:4	KF (2)	59
8	$[RhCl(COD)]_2$	10	2:1:4	LiF (2)	Trace
9	$[RhCl(COD)]_2$	10	2:1:4	NaF (2)	Trace
10	$[RhCl(COD)]_2$	10	2:1:4	CsF(2)	15
11	[RhCl(COD)] ₂	20	2:1:4	KF (2)	26
12 ^c	$[RhCl(COD)]_2$	10	2:1:4	KF (2)	<5

^a Two equivalents of water were used.

^b It was contaminated with 17% of **5a** (the ratio of **4a:5a** is 1:2.1).

^c The reaction was conducted in dioxane at 80 $^{\circ}$ C.

^d Isolated yield.

^e The reaction was conducted in the absence of water.

^f It was contaminated with **5a** (20%).

aryl ring provides opportunity for the synthesis of new α , β unsaturated δ -lactones via the related reactions of the C–X bond (entries 6–8). The structure of the lactone products was further established by the X-ray diffraction studies of **4c** (Fig. 1).²² It should be noted that under the current reaction conditions the yields with aliphatic aldehydes are very low.

The chemical shifts of the non-aromatic protons H^a , H^b , H^c , and H^d of **4a–4k** are listed in Table 3. The olefinic proton H^a appears in the range of 6.37–6.48 in most cases as a singlet (**4a**, **4c**, **4e**, **4g**, **4h**, and **4k**). However, for compounds **4b**, **4d**, **4i**, and **4j**, it is a doublet while that of **4f** appears as a triplet due to the allylic coupling. The allylic proton (H^b and H^c) appears in the range of 2.83–3.23 mostly as multiplet (**4b**, **4d**, **4e**, **4f**, **4g**, **4h**, and **4j**). In compounds **4a**, **4c**, and **4k**, a doublet was observed due to the coupling from H^d. In **4i**, these two protons are not equal: they couple with each other, H^a, and/or H^d. The chemical shift of H^d is in the range of 5.45–5.93, which appears as triplet or doublet–doublet due to the coupling with H^b and H^c.

A plausible mechanism for the formation of 4 is illustrated in Scheme 1. Transmetalation of $ArB(OH)_2$ with the catalytically active rhodium hydroxide I (formed probably via

Table 2. The Rh-catalyzed reactions of methyl buta-2,3-dienoate, arylboronic acids, and aryl aldehydes^a

 R^1

D2

	COOMe + + + + + + + + + + + + + + + + + + +	2.5 mol% [RhCl(COD)] ₂ /10 mol% P H ₂ O (4 equiv), KF (2 equiv) THF, 60 °C, N ₂ , overnight 3	PPh ₃ R ² 000 4b-4k	
Entry	Substrate 2	Substrate 3	Yield of 4^{c} (%)	
	R^1	R^2		
1 ^d	4-Me (2b)	Н (3 а)	50 (4b)	
2^d	3,5-Dimethyl (2c)	H (3a)	50 (4c)	
3 ^b	4-MeO (2d)	H (3a)	51 (4d)	
4	3-MeO (2e)	H (3a)	45 (4e)	
5	H (2a)	4-Me (3f)	55 (4f)	
6 ^d	H (2a)	4-Cl (3g)	49 (4g)	
7	H (2a)	4-Br (3h)	50 (4h)	
8 ^d	H (2a)	2-Cl (3i)	51 (4i)	
9 ^e	H (2a)	4-MeO (3j)	54 (4j)	
10	4-MeO (2d)	4-MeO (3j)	42 (4 k)	

^a Reaction conditions: 1/boronic acid 2/aldehyde 3=2:1:4, unless otherwise stated.

^b CsF: 2 equiv.

^c Isolated yield.

^d Three equivalents of **1** were used.

^e Four equivalents of **1** were applied.

Figure 1. ORTEP drawing of 4c.

the reaction of catalyst RhClL_n with water²³) may afford arylrhodium intermediate **II**; carborhodiation of methyl buta-2,3-dienoate **1** with **II** would form π -allyl rhodium

Table 3. Non-aromatic ¹H NMR data of the products 4a-4k

Product	Non-aromatic protons				
	H^{a}	H ^b , H ^c	H^d		
4a	6.43 (s)	2.99 (d, <i>J</i> =7.7 Hz, 2H)	5.53 (t, J=7.7 Hz)		
4b	6.44 (d, <i>J</i> =0.9 Hz)	3.04–2.99 (m, 2H)	5.53 (dd, <i>J</i> =9.0, 7.2 Hz)		
4c	6.44 (s)	3.01 (d, J=8.1 Hz, 2H)	5.52 (t, J=8.1 Hz)		
4d	6.40 (d, <i>J</i> =0.6 Hz)	3.03–2.96 (m, 2H)	5.52 (dd, <i>J</i> =9.9, 6.3 Hz)		
4 e	6.45 (s)	3.04–2.99 (m, 2H)	5.53 (dd, <i>J</i> =8.4, 7.2 Hz)		
4f	6.47 (t, <i>J</i> =0.9 Hz)	3.06-3.00 (m, 2H)	5.51 (dd, <i>J</i> =9.6, 5.7 Hz)		
4g	6.46 (s)	3.03-2.97 (m, 2H)	5.52 (dd, <i>J</i> =7.2, 6.3 Hz)		
4h	6.46 (s)	3.03-2.98 (m, 2H)	5.51 (dd, <i>J</i> =9.6, 6.3 Hz)		
4i	6.48 (d, <i>J</i> =2.4 Hz)	3.23 (dd, <i>J</i> =17.9, 3.5 Hz, 1H), 2.83 (ddd, <i>J</i> =17.9, 12.3, 2.4 Hz, 1H)	5.93 (dd, <i>J</i> =12.3, 3.5 Hz)		
4j	6.45 (d, <i>J</i> =1.5 Hz)	3.05–2.98 (m, 2H)	5.49 (dd, <i>J</i> =10.8, 5.1 Hz)		
4k	6.37 (s)	2.97 (d, J=7.0 Hz, 2H)	5.45 (t, J=8.0 Hz)		

intermediate **III**; further insertion of the carbon–oxygen double bond into the carbon–rhodium bond in **III** led to the formation of species **IV**; upon hydrolysis, it gave **4** and regenerated the catalytically active species **I**. It is believed that water helps the generation of the catalytically active species and the cyclization process.

Scheme 1. Proposed catalytic cycle.

3. Conclusion

In summary, we have developed an efficient method to synthesize α,β -unsaturated δ -lactones via a Rh(I)-catalyzed three-component reaction. Further studies in this area including design of new catalysts and enantioselective reactions are being conducted in our laboratory.

4. Experimental

4.1. General experimental procedure for the synthesis of α , β -unsaturated δ -lactones (4a–4k)

Under an argon atmosphere, a mixture of organoboronic acid **2** (0.25 mmol), methyl 2,3-butadienoate **1** (0.5–1.0 mmol), aldehyde **3** (1.0 mmol), KF (0.5 mmol), [RhCl(COD)]₂ (2.5 mmol %), triphenylphosphine (10 mmol %), water (1.0 mmol), and anhydrous THF (3 mL) was stirred at 60 °C. The reaction was monitored by TLC. After complete consumption of starting material, the solvent was evaporated and the mixture was purified via flash chromatography on silica gel (petroleum ether/diethyl ether) to afford pure product.

4.1.1. 4,6-Diphenyl-5,6-dihydropyran-2-one (**4a**). The reaction of phenylboronic acid **2a** (31 mg, 0.25 mmol), methyl 2,3-butadienoate **1** (51 mg, 0.52 mmol), benzalde-hyde **3a** (100 μ L, 104 mg, 1.02 mmol), KF (29 mg, 0.50 mmol), [RhCl(COD)]₂ (3 mg, 0.006 mmol), PPh₃ (7 mg, 0.027 mmol), and H₂O (18 μ L, 18 mg, 1.00 mmol) in 3 mL of anhydrous THF afforded **4a** (36 mg, 59%): solid, mp 91–93 °C (ether); ¹H NMR (300 MHz, CDCl₃): δ 7.55–7.48 (m, 2H), 7.47–7.30 (m, 8H), 6.43 (s, 1H), 5.53 (t, *J*=7.7 Hz, 1H), 2.99 (d, *J*=7.7 Hz, 2H); ¹³C NMR (75.4 MHz, CDCl₃): δ 165.3, 154.6, 138.5, 135.8, 130.7,

129.0, 128.7, 128.6, 126.1, 126.0, 114.9, 78.8, 34.1; MS (EI) m/z (%): 250 (M⁺, 2.54), 144 (100); IR (KBr) ν (cm⁻¹): 1696, 1612, 1269, 1027. Anal. Calcd for C₁₇H₁₄O₂ (%): C, 81.58; H, 5.64. Found: C, 81.20; H, 5.92.

4.1.2. 6-Phenyl-4-(4-tolyl)-5,6-dihydropyran-2-one (4b). The reaction of 4-tolylboronic acid **2b** (33 mg, 0.24 mmol), methyl 2,3-butadienoate **1** (73 mg, 0.74 mmol), benzalde-hyde **3a** (100 µL, 104 mg, 1.02 mmol), KF (30 mg, 0.52 mmol), [RhCl(COD)]₂ (3 mg, 0.006 mmol), PPh₃ (6 mg, 0.023 mmol), and H₂O (18 µL, 18 mg, 1.00 mmol) in 3 mL of anhydrous THF afforded **4b** (32 mg, 50%): solid, mp 90–91 °C (ether); ¹H NMR (300 MHz, CDCl₃): δ 7.50–7.21 (m, 9H), 6.44 (d, *J*=0.9 Hz, 1H), 5.53 (dd, *J*=9.0, 7.2 Hz, 1H), 3.04–2.99 (m, 2H), 2.39 (s, 3H); ¹³C NMR (75.4 MHz, CDCl₃): δ 165.5, 154.5, 141.3, 138.6, 132.8, 129.7, 128.7, 128.6, 126.1, 125.9, 113.9, 78.7, 34.0, 21.3; MS (EI) *m/z* (%): 264 (M⁺, 6.49), 158 (100); IR (KBr) ν (cm⁻¹): 1695, 1608, 1267, 1036, 1026. Anal. Calcd for C₁₈H₁₆O₂ (%): C, 81.79; H, 6.10. Found: C, 81.77; H, 6.08.

4.1.3. 4-(**3**',**5**'-**Dimethylphenyl**)-**6-phenyl-5,6-dihydropyran-2-one (4c).** The reaction of 3,5-dimethylphenylboronic acid **2c** (37 mg, 0.25 mmol), methyl 2,3-butadienoate **1** (73 mg, 0.74 mmol), benzaldehyde **3a** (100 µL, 104 mg, 1.02 mmol), KF (30 mg, 0.52 mmol), [RhCl(COD)]₂ (3 mg, 0.006 mmol), PPh₃ (7 mg, 0.027 mmol), and H₂O (18 µL, 18 mg, 1.00 mmol) in 3 mL of anhydrous THF af forded **4c** (34 mg, 50%): solid, mp 123–125 °C (ether); ¹H NMR (300 MHz, CDCl₃): δ 7.51–7.34 (m, 5H), 7.16 (s, 2H), 7.09 (s, 1H), 6.44 (s, 1H), 5.52 (t, *J*=8.1 Hz, 1H), 3.01 (d, *J*=8.1 Hz, 2H), 2.35 (s, 6H); ¹³C NMR (75.4 MHz, CDCl₃): δ 165.4, 154.9, 138.6, 138.57, 135.8, 132.4, 128.64, 128.57, 126.1, 123.8, 114.5, 78.8, 34.3, 21.3; MS (EI) *m/z* (%): 278 (M⁺, 7.59), 172 (100); IR (KBr) ν (cm⁻¹) 1697, 1614, 1600, 1256, 1021. Anal. Calcd for C₁₉H₁₈O₂ (%): C, 81.99; H, 6.52. Found: C, 82.16; H, 6.67.

4.1.4. 4-(4'-Methoxyphenyl)-6-phenyl-5,6-dihydropyran-2-one (4d).^{19b} The reaction of 4-methoxyphenylboronic acid 2d (38 mg, 0.25 mmol), methyl 2,3-butadienoate 1 (75 mg, 0.74 mmol), benzaldehyde **3a** (100 µL, 104 mg, 1.02 mmol), CsF (75 mg, 0.49 mmol), [RhCl(COD)]₂ (3 mg, 0.006 mmol), PPh₃ (6 mg, 0.023 mmol), and H₂O (18 µL, 18 mg, 1.00 mmol) in 3 mL of anhydrous THF afforded 4d (36 mg, 51%): solid, mp 112–114 °C (ether) [lit. 126–127 °C (ether)^{19b}]; ¹H NMR (300 MHz, CDCl₃): δ 7.55-7.33 (m, 7H), 6.97-6.92 (m, 2H), 6.40 (d, J=0.6 Hz, 1H), 5.52 (dd, J=9.9, 6.3 Hz, 1H), 3.85 (s, 3H), 3.03–2.96 (m, 2H); ¹³C NMR (75.4 MHz, CDCl₃): δ 165.6, 161.7, 153.9, 138.6, 128.62, 128.55, 127.8, 127.6, 126.0, 114.3, 112.6, 78.6, 55.4, 33.9; MS (EI) m/z (%): 280 (M⁺, 33.39), 174 (100); IR (KBr) ν (cm⁻¹): 1685, 1604, 1513, 1252, 1183, 1032. Anal. Calcd for C₁₈H₁₆O₃ (%): C, 77.12; H, 5.75. Found: C, 77.36; H, 5.64.

4.1.5. 4-(3'-Methoxyphenyl)-6-phenyl-5,6-dihydropyran-2-one (4e). The reaction of 3-methoxyphenylboronic acid **2e** (37 mg, 0.24 mmol), methyl 2,3-butadienoate **1** (52 mg, 0.53 mmol), benzaldehyde **3a** (100 μ L, 104 mg, 1.02 mmol), KF (31 mg, 0.50 mmol), [RhCl(COD)]₂ (3 mg, 0.006 mmol), PPh₃ (7 mg, 0.027 mmol), and H₂O (18 μ L, 18 mg, 1.00 mmol) in 3 mL of anhydrous THF afforded **4e** (31 mg, 45%): oil; ¹H NMR (300 MHz, CDCl₃): δ 7.50–7.34 (m, 6H), 7.15–7.11 (m, 1H), 7.06–7.04 (m, 1H), 7.02–6.99 (m, 1H), 6.45 (s, 1H), 5.53 (dd, *J*=8.4, 7.2 Hz, 1H), 3.83 (s, 3H), 3.04–2.99 (m, 2H); ¹³C NMR (75.4 MHz, CDCl₃): δ 165.2, 159.9, 154.5, 138.5, 137.3, 130.0, 128.69, 128.65, 126.1, 118.4, 116.1, 115.2, 111.6, 78.8, 55.3, 34.2; MS (EI) *m*/*z* (%): 280 (M⁺, 3.80), 84 (100); IR (neat) ν (cm⁻¹): 1712, 1617, 1598, 1578, 1266; HRMS calcd for C₁₈H₁₆O₃ [M⁺] 280.1099. Found: 280.1094.

4.1.6. 4-Phenyl-6-(4-tolyl)-5.6-dihydropyran-2-one (4f). The reaction of phenylboronic acid **2a** (30 mg, 0.25 mmol), methyl 2.3-butadienoate 1 (53 mg, 0.54 mmol), 4-methylbenzaldehyde 3f (118 µL, 120 mg, 1.00 mmol), KF (28 mg, 0.48 mmol), [RhCl(COD)]₂ (3 mg, 0.006 mmol), PPh₃ (6 mg, 0.023 mmol), and H₂O (18 µL, 18 mg, 1.00 mmol) in 3 mL of anhydrous THF afforded 4f (36 mg, 55%): solid, mp 102–103 °C (ether); ¹H NMR (300 MHz, CDCl₃): δ 7.58–7.53 (m, 2H), 7.48–7.42 (m, 3H), 7.37 (d, J=8.1 Hz, 2H), 7.27-7.20 (m, 2H), 6.47 (t, J=0.9 Hz, 1H), 5.51 (dd, J=9.6, 5.7 Hz, 1H), 3.06–3.00 (m, 2H), 2.38 (s, 3H); ¹³C NMR (75.4 MHz, CDCl₃): δ 165.3, 154.6, 138.5, 135.9, 135.5, 130.7, 129.3, 129.0, 126.0, 125.96, 114.9, 78.7, 34.0, 21.1; MS (EI) m/z (%): 264 (M⁺, 1.98), 144 (100); IR (KBr) ν (cm⁻¹): 1711, 1613, 1266, 1082; HRMS calcd for [M⁺] C₁₈H₁₆O₂, 264.1150. Found: 264.1141.

4.1.7. 6-(4'-Chlorophenyl)-4-phenyl-5,6-dihydropyran-2one (4g). The reaction of phenylboronic acid 2a (30 mg, 0.25 mmol), methyl 2,3-butadienoate 1 (75 mg, 0.77 mmol), 4-chlorobenzaldehyde **3g** (144 mg, 1.02 mmol), KF (30 mg, 0.52 mmol), [RhCl(COD)]₂ (3 mg, 0.006 mmol), PPh₃ (6 mg, 0.023 mmol), and H₂O (18 µL, 18 mg, 1.00 mmol) in 3 mL of anhydrous THF afforded 4g (34 mg, 49%): solid, mp 116–117 °C (ether); ¹H NMR (300 MHz, $CDCl_3$): δ 7.57-7.52 (m, 2H), 7.48-7.36 (m, 7H), 6.46 (s, 1H), 5.52 (dd, J=7.2, 6.3 Hz, 1H), 3.03–2.97 (m, 2H); ¹³C NMR (75.4 MHz, CDCl₃): δ 164.9, 154.4, 137.0, 135.6, 134.4, 130.8, 129.0, 128.9, 127.4, 126.0, 114.8, 78.0, 34.0; MS (EI) m/z (%): 286 (M⁺ (³⁷Cl), 0.41), 284 (M⁺ (³⁵Cl), 1.57), 144 (100); IR (KBr) ν (cm⁻¹): 1709, 1695, 1617, 1261, 1082. Anal. Calcd for C₁₇H₁₃ClO₂ (%): C, 71.71; H, 4.60. Found: C, 71.87; H, 4.55.

4.1.8. 6-(4-Bromophenyl)-4-phenyl-5,6-dihydropyran-2one (4h). The reaction of phenylboronic acid 2a (30 mg, 0.25 mmol), methyl 2,3-butadienoate 1 (50 mg, 0.51 mmol), 4-bromobenzaldehyde **3h** (184 mg, 0.99 mmol), KF (29 mg, 0.50 mmol), [RhCl(COD)]₂ (3 mg, 0.006 mmol), PPh₃ (7 mg, 0.027 mmol), and H₂O (18 µL, 18 mg, 1.00 mmol) in 3 mL of anhydrous THF afforded 4h (40 mg, 50%): solid, mp 115–116 °C (ether); ¹H NMR (300 MHz, CDCl₃): δ 7.58–7.51 (m, 4H), 7.48–7.41 (m, 3H), 7.39–7.33 (m, 2H), 6.46 (s, 1H), 5.51 (dd, J=9.6, 6.3 Hz, 1H), 3.03-2.98 (m, 2H); ¹³C NMR (75.4 MHz, CDCl₃): δ 165.0, 154.5, 137.5, 135.6, 131.8, 130.9, 129.0, 127.7, 126.0, 122.6, 114.9, 78.0, 34.0; MS (EI) m/z (%): 330 (M⁺ (⁸¹Br), 0.60), 328 $(M^+ (^{79}Br), 0.79), 144 (100); IR (KBr) \nu (cm^{-1}): 1708,$ 1616, 1488, 1260, 1080. Anal. Calcd for C₁₇H₁₃BrO₂ (%): C, 62.03; H, 3.98. Found: C, 61.98; H, 4.33.

4.1.9. 6-(2'-Chlorophenyl)-4-phenyl-5,6-dihydropyran-2-one (4i). The reaction of phenylboronic acid **2a** (30 mg,

0.25 mmol), methyl 2,3-butadienoate 1 (78 mg, 0.80 mmol), 2-chlorobenzaldehyde 3i (112 µL, 140 mg, 1.00 mmol), KF (30 mg, 0.52 mmol), [RhCl(COD)]₂ (3 mg, 0.006 mmol), PPh_3 (6 mg, 0.023 mmol), and H_2O (18 µL, 18 mg, 1.00 mmol) in 3 mL of anhydrous THF afforded 4i (36 mg, 51%): solid, mp 120–122 °C (ether); ¹H NMR (300 MHz, CDCl₃): δ 7.75–7.71 (m, 1H), 7.58–7.53 (m, 2H), 7.48-7.25 (m, 6H), 6.48 (d, J=2.4 Hz, 1H), 5.93 (dd, J=12.3, 3.5 Hz, 1H), 3.23 (dd, J=17.9, 3.5 Hz, 1H), 2.83 (ddd, J=17.9, 12.3, 2.4 Hz, 1H); ¹³C NMR (75.4 MHz, CDCl₃): δ 165.1, 154.7, 136.3, 135.7, 131.3, 130.8, 129.6, 129.5, 129.0, 127.5, 127.45, 126.1, 114.7, 75.7, 32.6; MS (EI) m/z (%): 286 (M⁺ (³⁷Cl), 0.54), 284 (M⁺ (³⁵Cl), 1.33), 144 (100); IR (KBr) ν (cm⁻¹): 1705, 1619, 1263, 1024. Anal. Calcd for C₁₇H₁₃ClO₂ (%): C, 71.71; H, 4.60. Found: C, 71.86; H, 4.78.

4.1.10. 6-(4'-Methoxyphenyl)-4-phenyl-5,6-dihydropyran-2-one (4j). The reaction of phenylboronic acid 2a (31 mg, 0.25 mmol), methyl 2,3-butadienoate 1 (98 mg, 1.00 mmol), 4-methoxybenzaldehyde **3**j (121 µL, 136 mg, 1.00 mmol), KF (28 mg, 0.48 mmol), [RhCl(COD)]₂ (3 mg, 0.006 mmol), PPh₃ (6 mg, 0.023 mmol), and H₂O (18 µL, 18 mg, 1.00 mmol) in 3 mL of anhydrous THF afforded **4i** (38 mg, 54%): solid, mp 94–95 °C (ether); ¹H NMR (300 MHz, CDCl₃): δ 7.58–7.52 (m, 2H), 7.48–7.36 (m, 5H), 6.97-6.91 (m, 2H,), 6.45 (d, J=1.5 Hz, 1H), 5.49 (dd, J=10.8, 5.1 Hz, 1H), 3.82 (s, 3H), 3.05–2.98 (m, 2H); ¹³C NMR (75.4 MHz, CDCl₃): δ 165.4, 159.8, 154.6, 135.9, 130.7, 130.5, 129.0, 127.6, 126.0, 114.9, 114.0, 78.6, 55.3, 34.0; MS (EI) m/z (%): 280 (M⁺, 6.45), 144 (100); IR (KBr) ν (cm⁻¹): 1709, 1613, 1515, 1249, 1025. Anal. Calcd for C₁₈H₁₆O₃ (%): C, 77.12; H, 5.75. Found: C, 77.28; H, 5.91.

4.1.11. 4,6-Bis(4'-methoxyphenyl)-5,6-dihydropyran-2one (4k).^{19b} The reaction of 4-methoxyphenylboronic acid 2d (38 mg, 0.25 mmol), methyl 2,3-butadienoate 1 (53 mg, 0.54 mmol), 4-methoxybenzaldehyde 3j (120 µL, 136 mg, 1.00 mmol), KF (29 mg, 0.50 mmol), [RhCl(COD)]₂ (3 mg, 0.006 mmol), PPh₃ (7 mg, 0.027 mmol), and H₂O (18 µL, 18 mg, 1.00 mmol) in 3 mL of anhydrous THF afforded 4k (32 mg, 42%): solid, mp 106–108 °C (ether) [lit. 116–118 °C (ether)^{19b}]; ¹H NMR (300 MHz, CDCl₃): δ 7.52 (d, J=8.7 Hz, 2H), 7.39 (d, J=9 Hz, 2H), 6.97-6.90 (m, 4H), 6.37 (s, 1H), 5.45 (t, J=8.0 Hz, 1H), 3.84 (s, 3H), 3.82 (s, 3H), 2.97 (d, J=7.0 Hz, 2H); ¹³C NMR (75.4 MHz, CDCl₃): δ 161.7, 159.7, 154.0, 130.7, 127.9, 127.62, 127.60, 114.3, 114.0, 112.6, 78.5, 55.4, 55.3, 33.8; MS (EI) m/z (%): 310 $(M^+, 6.27), 73 (100); IR (KBr) \nu (cm^{-1}): 1697, 1600,$ 1517, 1247, 1186, 1031. Anal. Calcd for C₁₉H₁₈O₄ (%): C, 73.53; H, 5.85. Found: C, 73.72; H, 5.95.

4.2. Synthesis of 4-(4'-methoxyphenyl)-6-phenyl-5,6-dihydropyran-2-one (4d) and methyl 5-hydroxy-3-(4methoxyphenyl)-5-phenylpent-2(*E*)-enoate (5d)

The reaction of 4-methoxyphenylboronic acid **2d** (381 mg, 2.51 mmol), methyl 2,3-butadienoate **1** (125 mg, 1.28 mmol), benzaldehyde **3a** (250 μ L, 265 mg, 2.50 mmol), RhCl(PPh₃)₃ (60 mg, 0.06 mmol), Cs₂CO₃ (200 mg, 0.61 mmol), H₂O (45 μ L, 45 mg, 2.50 mmol) in 15 mL of anhydrous THF afforded white solid **4d** (45 mg, 13%) and

colorless oil **5d** (72 mg, 19%). The data of **5d**: ¹H NMR (300 MHz, CDCl₃): δ 7.49–7.39 (m, 4H), 7.37–7.30 (m, 2H), 7.28–7.22 (m, 1H), 6.94–6.89 (m, 2H), 6.23 (s, 1H), 4.75 (dd, *J*=9.6, 3.0 Hz, 1H), 3.85 (s, 3H), 3.78 (s, 3H), 3.69 (dd, *J*=13.5, 10.2 Hz, 1H), 3.19 (dd, *J*=13.5, 3.3 Hz, 1H); ¹³C NMR (75.4 MHz, CDCl₃): δ 168.8, 160.7, 156.6, 145.0, 132.4, 128.35, 128.32, 127.3, 125.5, 117.4, 114.0, 73.6, 55.3, 51.7, 41.2; MS (EI) *m/z*: 312 (M⁺, 0.40), 280 (12.30), 206 (100); IR (neat): ν (cm⁻¹): 1710, 1602, 1512, 1170; HRMS (MALDI/DHB): calcd for C₁₉H₂₀O₄Na⁺ [M+Na⁺] 335.1263. Found: 335.1254.

Acknowledgements

We thank the financial support from the National Natural Science Foundation of China (20429201) and the Chinese Academy of Sciences.

Supplementary data

Supplementary data associated with this article can be found in the online version, at doi:10.1016/j.tet.2007.03.021.

References and notes

- 1. Gloriam, B.; Gil, R.; Obert, C. J. Nat. Prod. 1995, 58, 705.
- 2. Abida, L.; Mahendras, A.; Nilb, R. A. J. Nat. Prod. **1984**, 47, 648.
- (a) de Fatima, A.; Kohn, L. K.; Antonio, M. A.; de Carvalho, J. E.; Pilli, R. A. *Bioorg. Med. Chem.* 2005, *13*, 2927; (b) Chen, W. Y.; Wu, C. C.; Lan, Y. H.; Chang, F. R.; Teng, C. M.; Wu, Y. C. *Eur. J. Pharmacol.* 2005, *522*, 20; (c) de Fatima, A.; Kohn, L. K.; Antonio, M. A.; de Carvalho, J. E.; Pilli, R. A. *Bioorg. Med. Chem.* 2006, *14*, 622.
- (a) Lewy, D. S.; Gauss, C. M.; Soenen, D. R.; Boger, D. L. Curr. Med. Chem. 2002, 9, 2050; (b) Buck, S. B.; Hardouin, C.; Ichikawa, S.; Soenen, D. R.; Gauss, C. M.; Hwang, I.; Swingle, M. R.; Bonness, K. M.; Honkanen, R. E.; Boger, D. L. J. Am. Chem. Soc. 2003, 125, 15694; (c) Maki, K.; Motoki, R.; Fujii, K.; Kanai, M.; Kobayashi, T.; Tamura, S.; Shibasaki, M. J. Am. Chem. Soc. 2005, 127, 17111.
- (a) *The Chemistry of the Allenes*; Landor, S. R., Ed.; Academic: London, 1982; Vol. 1; (b) *Modern Allene Chemistry*; Krause, N., Hashmi, A. S. K., Eds.; Wiley-VCH: Weinheim, Germany, 2004; Vols. 1 and 2.
- (a) Zimmer, R. C.; Dinesh, U.; Nandanan, E.; Khan, F. A. *Chem. Rev.* 2000, 100, 3067; (b) Reissig, H. U.; Schade, W.; Amombo, M. O.; Pulz, R. A. H. *Pure Appl. Chem.* 2002, 74, 175; (c) Sydnes, L. K. *Chem. Rev.* 2003, 103, 1133; (d) Ma, S. *Chem. Rev.* 2005, 105, 2829 and references therein.
- For some of the most recent reactions of allenes, see: (a) Huang, J.; Hsung, R. P. J. Am. Chem. Soc. 2005, 127, 50; (b) Chang, K. J.; Rayabarapu, D. K.; Yang, F. Y.; Cheng, C. H. J. Am. Chem. Soc. 2005, 127, 126; (c) Ng, S. S.; Jamison, T. F. J. Am. Chem. Soc. 2005, 127, 7320; (d) Trost, B. M.; Fandrick, D. R.; Dinh, D. C. J. Am. Chem. Soc. 2005, 127, 14186; (e) Ohmura, T.; Taniguchi, H.; Suginome, M. J. Am. Chem. Soc. 2006, 128, 13682; (f) Ma, S.; Gu, Z. J. Am. Chem. Soc. 2006, 128, 4942.

- Brummond, K. M.; Chen, H. Allenes in Natural Product Synthesis; Krause, N., Hashmi, A. S. K., Eds.; Modern Allene Chemistry; Wiley-VCH: Weinheim, Germany, 2004; Vols. 1 and 2 and references therein.
- (a) Trost, B. M.; Jakel, C.; Plietker, B. J. Am. Chem. Soc. 2003, 125, 4438; (b) Franzen, J.; Lofstedt, J.; Dorange, I.; Backvall, J. E. J. Am. Chem. Soc. 2002, 124, 11246; (c) Huang, T. H.; Chang, H. M.; Wu, M. Y.; Cheng, C. H. J. Org. Chem. 2002, 67, 99; (d) Zenner, J. M.; Larock, R. C. J. Org. Chem. 1999, 64, 7312.
- 10. (a) Krug, C.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 1674;
 (b) Krug, C.; Hartwig, J. F. Organometallics 2004, 23, 4594; (c) Oi, S.; Moro, M.; Inoue, Y. Organometallics 2001, 20, 1036;
 (d) Willis, M. C.; Woodward, R. L. J. Am. Chem. Soc. 2005, 127, 18012.
- For methods utilizing ring-closing metathesis, see: (a) Marco, J. A.; Carda, M.; Rodriguez, S.; Castillo, E.; Kneeteman, M. N. *Tetrahedron* 2003, *59*, 4085; (b) Carda, M.; Castillo, E.; Rodriguez, S.; Uriel, S.; Marco, J. A. *Synlett* 1999, 1639; (c) Fuerstner, A.; Thiel, O. R.; Ackermann, L.; Schanz, H. J.; Nolan, S. P. J. Org. Chem. 2000, *65*, 2204.
- For a palladium-catalyzed rearrangement of vinyl oxiranes, see: Marion, F.; Le Fol, R.; Courillon, C.; Malacria, M. Synlett 2001, 138.
- For a hydrozirconation–carbonylation method, see: Dupont, J.; Dupont, A. J. *Tetrahedron: Asymmetry* **1998**, *9*, 949.
- For methods involving reduction of alkynes, see: (a) Watanabe, H.; Watanabe, H.; Bando, M.; Kido, M.; Kitahara, T. *Tetrahedron* 1999, 55, 9755; (b) Surivet, J. P.; Vatèle, J. M. *Tetrahedron* 1999, 55, 13011; (c) Marshall, J. A.; Adams, N. D. J. Org. Chem. 1999, 64, 5201.
- For some methods utilizing hydrogenation of 2-pyrones, see:
 (a) Huck, W. R.; Burgi, T. T.; Baiker, M. A. J. Catal. 2003, 219, 41; (b) Fehr, M. J.; Consiglio, G.; Scalone, M.; Schmid, R. J. Org. Chem. 1999, 64, 5768.
- For methods utilizing reactions of epoxides with alkynes followed by cuprate additions and lactonization, see: Ahmed, A.; Hoegenauer, E. K.; Enev, V. S.; Hanbauer, M.; Kaehlig, H.; Öhler, E.; Mulzer, J. J. Org. Chem. 2003, 68, 3026.
- For methods utilizing classical condensation reactions, see: (a) Audin, P.; Pivetau, N.; Dussert, A. S.; Paris, J. *Tetrahedron* **1999**, *55*, 7847; (b) Keck, G. E.; Li, X.-Y.; Knutson, C. E. Org. Lett. **1999**, *1*, 411.

- For a general review on vinylogous Mukaiyama-aldol reaction, see: Casiraghi, G.; Zanardi, F.; Appendino, G.; Rassu, G. *Chem. Rev.* 2000, 100, 1929.
- 19. (a) Hopkins, C. D.; Malinakova, H. C. Org. Lett. 2004, 6, 2221;
 (b) Hopkins, C. D.; Guan, L.; Malinakova, H. C. J. Org. Chem. 2005, 70, 6848.
- 20. The stereochemistry of (*E*)-**5a** was assigned based on the NOE analysis of methyl 5-hydroxy-3-(4-methoxyphenyl)-5-phenyl-pent-2(*E*)-enoate **5d**, which can be separated from **4d** by chromatography on silica gel.

- For the report that fluoride can accelerate the transfer of the aryl group in the boronic acid to the rhodium atom, see: Wade, J. V.; Krueger, C. A. J. Comb. Chem. 2003, 5, 267.
- 22. Crystal data for **4b**: C₁₉H₁₈O₂, MW 278.33, monoclinic, P2(1)/n, Mo K α , final *R* indices $[I>2\sigma(I)]$, $R^1=0.0459$, wR2=0.1056, a=12.8384(13) Å, b=8.8698(9) Å, c=26.769(3) Å, $\beta=96.194(2)$, V=3030.5 Å³, Z=8, number of reflections measured/unique 17226/6595 ($R_{int}=0.0755$), number of observations ($I>2.00\sigma(I)$) 2874, parameters 391, goodness-of-fit on F^2 0.791. Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Center, CCDC 629376.
- (a) Hayashi, T.; Takahashi, M.; Takaya, Y.; Ogasawara, M. J. Am. Chem. Soc. 2002, 124, 5052; (b) Yoshida, K.; Hayashi, T. Heterocycles 2003, 59, 605; (c) Ozawa, F.; Kubo, A.; Matsumoto, Y.; Hayashi, T. Organometallics 1993, 12, 4188.